Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro.

Identifieur interne : 000018 ( Main/Exploration ); précédent : 000017; suivant : 000019

Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro.

Auteurs : Asiya Gusa [États-Unis] ; Jonathan D. Williams [États-Unis] ; Jang-Eun Cho [États-Unis] ; Anna Floyd Averette [États-Unis] ; Sheng Sun [États-Unis] ; Eva Mei Shouse [États-Unis] ; Joseph Heitman [États-Unis] ; J Andrew Alspaugh [États-Unis] ; Sue Jinks-Robertson [États-Unis]

Source :

RBID : pubmed:32303657

Descripteurs français

English descriptors

Abstract

When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens. Cryptococcus species are yeastlike fungi that cause lethal infections, especially in HIV-infected patients. Using Cryptococcus deneoformans in a murine model of infection, we examined contributors to drug resistance and demonstrated that transposon mutagenesis drives the development of 5-fluoroorotic acid (5FOA) resistance. Inactivation of target genes URA3 or URA5 primarily reflected the insertion of two transposable elements (TEs): the T1 DNA transposon and the TCN12 retrotransposon. Consistent with in vivo results, increased rates of mutagenesis and resistance to 5FOA and the antifungal drugs rapamycin/FK506 (rap/FK506) and 5-fluorocytosine (5FC) were found when Cryptococcus was incubated at 37° compared to 30° in vitro, a condition that mimics the temperature shift that occurs during the environment-to-host transition. Inactivation of the RNA interference (RNAi) pathway, which suppresses TE movement in many organisms, was not sufficient to elevate TE movement at 30° to the level observed at 37°. We propose that temperature-dependent TE mobilization in Cryptococcus is an important mechanism that enhances microbial adaptation and promotes pathogenesis and drug resistance in the human host.

DOI: 10.1073/pnas.2001451117
PubMed: 32303657
PubMed Central: PMC7211991


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transposon mobilization in the human fungal pathogen
<i>Cryptococcus</i>
is mutagenic during infection and promotes drug resistance in vitro.</title>
<author>
<name sortKey="Gusa, Asiya" sort="Gusa, Asiya" uniqKey="Gusa A" first="Asiya" last="Gusa">Asiya Gusa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Williams, Jonathan D" sort="Williams, Jonathan D" uniqKey="Williams J" first="Jonathan D" last="Williams">Jonathan D. Williams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cho, Jang Eun" sort="Cho, Jang Eun" uniqKey="Cho J" first="Jang-Eun" last="Cho">Jang-Eun Cho</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Averette, Anna Floyd" sort="Averette, Anna Floyd" uniqKey="Averette A" first="Anna Floyd" last="Averette">Anna Floyd Averette</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sun, Sheng" sort="Sun, Sheng" uniqKey="Sun S" first="Sheng" last="Sun">Sheng Sun</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shouse, Eva Mei" sort="Shouse, Eva Mei" uniqKey="Shouse E" first="Eva Mei" last="Shouse">Eva Mei Shouse</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Alspaugh, J Andrew" sort="Alspaugh, J Andrew" uniqKey="Alspaugh J" first="J Andrew" last="Alspaugh">J Andrew Alspaugh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Medicine, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jinks Robertson, Sue" sort="Jinks Robertson, Sue" uniqKey="Jinks Robertson S" first="Sue" last="Jinks-Robertson">Sue Jinks-Robertson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; sue.robertson@duke.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:regionArea>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32303657</idno>
<idno type="pmid">32303657</idno>
<idno type="doi">10.1073/pnas.2001451117</idno>
<idno type="pmc">PMC7211991</idno>
<idno type="wicri:Area/Main/Corpus">000090</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000090</idno>
<idno type="wicri:Area/Main/Curation">000090</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000090</idno>
<idno type="wicri:Area/Main/Exploration">000090</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transposon mobilization in the human fungal pathogen
<i>Cryptococcus</i>
is mutagenic during infection and promotes drug resistance in vitro.</title>
<author>
<name sortKey="Gusa, Asiya" sort="Gusa, Asiya" uniqKey="Gusa A" first="Asiya" last="Gusa">Asiya Gusa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Williams, Jonathan D" sort="Williams, Jonathan D" uniqKey="Williams J" first="Jonathan D" last="Williams">Jonathan D. Williams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cho, Jang Eun" sort="Cho, Jang Eun" uniqKey="Cho J" first="Jang-Eun" last="Cho">Jang-Eun Cho</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Averette, Anna Floyd" sort="Averette, Anna Floyd" uniqKey="Averette A" first="Anna Floyd" last="Averette">Anna Floyd Averette</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sun, Sheng" sort="Sun, Sheng" uniqKey="Sun S" first="Sheng" last="Sun">Sheng Sun</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shouse, Eva Mei" sort="Shouse, Eva Mei" uniqKey="Shouse E" first="Eva Mei" last="Shouse">Eva Mei Shouse</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Alspaugh, J Andrew" sort="Alspaugh, J Andrew" uniqKey="Alspaugh J" first="J Andrew" last="Alspaugh">J Andrew Alspaugh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Medicine, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jinks Robertson, Sue" sort="Jinks Robertson, Sue" uniqKey="Jinks Robertson S" first="Sue" last="Jinks-Robertson">Sue Jinks-Robertson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; sue.robertson@duke.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:regionArea>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antifungal Agents (adverse effects)</term>
<term>Antifungal Agents (pharmacology)</term>
<term>Cryptococcus neoformans (drug effects)</term>
<term>Cryptococcus neoformans (pathogenicity)</term>
<term>Drug Resistance, Fungal (genetics)</term>
<term>Host-Pathogen Interactions (genetics)</term>
<term>Humans (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mutagenesis (genetics)</term>
<term>Mycoses (genetics)</term>
<term>Mycoses (microbiology)</term>
<term>Orotic Acid (adverse effects)</term>
<term>Orotic Acid (analogs & derivatives)</term>
<term>Orotic Acid (pharmacology)</term>
<term>Retroelements (genetics)</term>
<term>Sirolimus (pharmacology)</term>
<term>Tacrolimus (pharmacology)</term>
<term>Virulence (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide orotique (analogues et dérivés)</term>
<term>Acide orotique (effets indésirables)</term>
<term>Acide orotique (pharmacologie)</term>
<term>Animaux (MeSH)</term>
<term>Antifongiques (effets indésirables)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Cryptococcus neoformans (effets des médicaments et des substances chimiques)</term>
<term>Cryptococcus neoformans (pathogénicité)</term>
<term>Humains (MeSH)</term>
<term>Interactions hôte-pathogène (génétique)</term>
<term>Mutagenèse (génétique)</term>
<term>Mycoses (génétique)</term>
<term>Mycoses (microbiologie)</term>
<term>Résistance des champignons aux médicaments (génétique)</term>
<term>Rétroéléments (génétique)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Souris (MeSH)</term>
<term>Tacrolimus (pharmacologie)</term>
<term>Virulence (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Antifungal Agents</term>
<term>Orotic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Orotic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Retroelements</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Orotic Acid</term>
<term>Sirolimus</term>
<term>Tacrolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Acide orotique</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cryptococcus neoformans</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Cryptococcus neoformans</term>
</keywords>
<keywords scheme="MESH" qualifier="effets indésirables" xml:lang="fr">
<term>Acide orotique</term>
<term>Antifongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Drug Resistance, Fungal</term>
<term>Host-Pathogen Interactions</term>
<term>Mutagenesis</term>
<term>Mycoses</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Interactions hôte-pathogène</term>
<term>Mutagenèse</term>
<term>Mycoses</term>
<term>Résistance des champignons aux médicaments</term>
<term>Rétroéléments</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Mycoses</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Mycoses</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Cryptococcus neoformans</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Cryptococcus neoformans</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide orotique</term>
<term>Antifongiques</term>
<term>Sirolimus</term>
<term>Tacrolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens.
<i>Cryptococcus</i>
species are yeastlike fungi that cause lethal infections, especially in HIV-infected patients. Using
<i>Cryptococcus deneoformans</i>
in a murine model of infection, we examined contributors to drug resistance and demonstrated that transposon mutagenesis drives the development of 5-fluoroorotic acid (5FOA) resistance. Inactivation of target genes
<i>URA3</i>
or
<i>URA5</i>
primarily reflected the insertion of two transposable elements (TEs): the T1 DNA transposon and the TCN12 retrotransposon. Consistent with in vivo results, increased rates of mutagenesis and resistance to 5FOA and the antifungal drugs rapamycin/FK506 (rap/FK506) and 5-fluorocytosine (5FC) were found when
<i>Cryptococcus</i>
was incubated at 37° compared to 30° in vitro, a condition that mimics the temperature shift that occurs during the environment-to-host transition. Inactivation of the RNA interference (RNAi) pathway, which suppresses TE movement in many organisms, was not sufficient to elevate TE movement at 30° to the level observed at 37°. We propose that temperature-dependent TE mobilization in
<i>Cryptococcus</i>
is an important mechanism that enhances microbial adaptation and promotes pathogenesis and drug resistance in the human host.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32303657</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>117</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Transposon mobilization in the human fungal pathogen
<i>Cryptococcus</i>
is mutagenic during infection and promotes drug resistance in vitro.</ArticleTitle>
<Pagination>
<MedlinePgn>9973-9980</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.2001451117</ELocationID>
<Abstract>
<AbstractText>When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens.
<i>Cryptococcus</i>
species are yeastlike fungi that cause lethal infections, especially in HIV-infected patients. Using
<i>Cryptococcus deneoformans</i>
in a murine model of infection, we examined contributors to drug resistance and demonstrated that transposon mutagenesis drives the development of 5-fluoroorotic acid (5FOA) resistance. Inactivation of target genes
<i>URA3</i>
or
<i>URA5</i>
primarily reflected the insertion of two transposable elements (TEs): the T1 DNA transposon and the TCN12 retrotransposon. Consistent with in vivo results, increased rates of mutagenesis and resistance to 5FOA and the antifungal drugs rapamycin/FK506 (rap/FK506) and 5-fluorocytosine (5FC) were found when
<i>Cryptococcus</i>
was incubated at 37° compared to 30° in vitro, a condition that mimics the temperature shift that occurs during the environment-to-host transition. Inactivation of the RNA interference (RNAi) pathway, which suppresses TE movement in many organisms, was not sufficient to elevate TE movement at 30° to the level observed at 37°. We propose that temperature-dependent TE mobilization in
<i>Cryptococcus</i>
is an important mechanism that enhances microbial adaptation and promotes pathogenesis and drug resistance in the human host.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gusa</LastName>
<ForeName>Asiya</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0001-9915-1834</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Jonathan D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cho</LastName>
<ForeName>Jang-Eun</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Averette</LastName>
<ForeName>Anna Floyd</ForeName>
<Initials>AF</Initials>
<Identifier Source="ORCID">0000-0002-5877-0812</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Sheng</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-2895-1153</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shouse</LastName>
<ForeName>Eva Mei</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heitman</LastName>
<ForeName>Joseph</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-6369-5995</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alspaugh</LastName>
<ForeName>J Andrew</ForeName>
<Initials>JA</Initials>
<Identifier Source="ORCID">0000-0003-3009-627X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Medicine, Duke University Medical Center, Durham, NC 27710.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jinks-Robertson</LastName>
<ForeName>Sue</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-5924-5852</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; sue.robertson@duke.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R37 AI039115</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 GM118077</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI052080</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI050113</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI133644</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI039115</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI074677</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018626">Retroelements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>61H4T033E5</RegistryNumber>
<NameOfSubstance UI="D009963">Orotic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7IA9OUC93E</RegistryNumber>
<NameOfSubstance UI="C001242">5-fluoroorotic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>WM0HAQ4WNM</RegistryNumber>
<NameOfSubstance UI="D016559">Tacrolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003455" MajorTopicYN="N">Cryptococcus neoformans</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025141" MajorTopicYN="N">Drug Resistance, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="N">Mutagenesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009181" MajorTopicYN="N">Mycoses</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009963" MajorTopicYN="N">Orotic Acid</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018626" MajorTopicYN="N">Retroelements</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016559" MajorTopicYN="N">Tacrolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cryptococcus</Keyword>
<Keyword MajorTopicYN="Y">drug resistance</Keyword>
<Keyword MajorTopicYN="Y">fungal pathogen</Keyword>
<Keyword MajorTopicYN="Y">temperature</Keyword>
<Keyword MajorTopicYN="Y">transposons</Keyword>
</KeywordList>
<CoiStatement>Competing interest statement: A.C. and J.H. are coauthors on a forthcoming position paper. They have not collaborated directly.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32303657</ArticleId>
<ArticleId IdType="pii">2001451117</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.2001451117</ArticleId>
<ArticleId IdType="pmc">PMC7211991</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2013 Jul;81(7):2626-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23670559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Fungal Infect Rep. 2014 Jun 1;8(2):163-170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25685251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2015 May;78:16-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25721988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Dec;47(12):1070-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21067947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2011 Feb 08;2(1):e00342-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21304167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2000 Apr;30(4):710-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10770733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2007 Feb;4(2):e21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17284154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Aug;45(3):837-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12139628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet. 1949 Dec;49(3):264-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24536673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1998 Dec;178(6):1761-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9815230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Apr;8(4):272-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17363976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Sep;70:12-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25011011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Apr;193(4):1163-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23378067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2016 Oct 11;17(1):209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27729060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013 Sep;11(9):e1001653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24058295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jan 18;409(6818):363-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11201747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Jan 8;11(1):127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31913284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Nov 15;24(22):2566-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2004 Nov;48(11):4377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15504867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2019 Nov 07;10(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31703352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2019 Dec;10(1):822-831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29436899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Apr;169(4):1845-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2009 Nov 15;200(10):1623-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19827944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2004;262:3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14769952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Aug;16(4):409-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23588027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Apr 21;434(7036):1017-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15846346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 25;307(5713):1321-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2012 Nov 1;509(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22921893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jan 30;10(1):e1004115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24497839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 05;9(8):e104432</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25093333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2019 Mar 1;129(3):999-1014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30688656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2018 Jun;209(2):425-438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29610215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1996 Jul;34(7):1739-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8784580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2004 Jun;72(6):3359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1626-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2017 Mar 7;8(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28270580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2003;57:275-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 2014 Aug;123(4):345-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24752783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 4;463(7281):662-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20062045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2017 Aug;17(8):873-881</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28483415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jun;19(6):4101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2019 Oct 1;10(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31575776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1950 Jun;36(6):344-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15430309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Jun 17;6(6):e1000953</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2006;60:69-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16704346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2001 Sep;39(9):3365-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11526180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1984 Nov 16;226(4676):792-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15739260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 1996 Jul;23(1):91-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8816135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Oct 27;12:526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22032296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr 01;6(4):e1000848</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20368972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2012 May;108(5):461-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21971178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2012 Jan;2(1):83-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2010 May 18;1(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20689745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1996 Jun;34(6):1531-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8735111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(5):e5524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19436753</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Gusa, Asiya" sort="Gusa, Asiya" uniqKey="Gusa A" first="Asiya" last="Gusa">Asiya Gusa</name>
</region>
<name sortKey="Alspaugh, J Andrew" sort="Alspaugh, J Andrew" uniqKey="Alspaugh J" first="J Andrew" last="Alspaugh">J Andrew Alspaugh</name>
<name sortKey="Alspaugh, J Andrew" sort="Alspaugh, J Andrew" uniqKey="Alspaugh J" first="J Andrew" last="Alspaugh">J Andrew Alspaugh</name>
<name sortKey="Averette, Anna Floyd" sort="Averette, Anna Floyd" uniqKey="Averette A" first="Anna Floyd" last="Averette">Anna Floyd Averette</name>
<name sortKey="Cho, Jang Eun" sort="Cho, Jang Eun" uniqKey="Cho J" first="Jang-Eun" last="Cho">Jang-Eun Cho</name>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
<name sortKey="Jinks Robertson, Sue" sort="Jinks Robertson, Sue" uniqKey="Jinks Robertson S" first="Sue" last="Jinks-Robertson">Sue Jinks-Robertson</name>
<name sortKey="Shouse, Eva Mei" sort="Shouse, Eva Mei" uniqKey="Shouse E" first="Eva Mei" last="Shouse">Eva Mei Shouse</name>
<name sortKey="Sun, Sheng" sort="Sun, Sheng" uniqKey="Sun S" first="Sheng" last="Sun">Sheng Sun</name>
<name sortKey="Williams, Jonathan D" sort="Williams, Jonathan D" uniqKey="Williams J" first="Jonathan D" last="Williams">Jonathan D. Williams</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000018 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000018 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32303657
   |texte=   Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32303657" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020